数学必修一教案6篇

时间:2024-12-10 作者:Kris

为了提升教育质量,很多人开始重视教案的科学性和合理性,一份完整的教案使教师能在课堂中增加更多的互动反馈环节,网客范文小编今天就为您带来了数学必修一教案6篇,相信一定会对你有所帮助。

数学必修一教案6篇

数学必修一教案篇1

一、说课内容:

苏教版九年级数学下册第六章第一节的二次函数的概念及相关习题

二、教材分析:

1、教材的地位和作用

这节课是在学生已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。二次函数是初中阶段研究的最后一个具体的函数,也是最重要的,在历年来的中考题中占有较大比例。同时,二次函数和以前学过的一元二次方程、一元二次不等式有着密切的联系。进一步学习二次函数将为它们的解法提供新的方法和途径,并使学生更为深刻的理解“数形结合”的重要思想。而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。所以这节课在整个教材中具有承上启下的重要作用。

2、教学目标和要求:

(1)知识与技能:使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围。

(2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高学生解决问题的能力.

(3)情感、态度与价值观:通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展学生的数学思维,增强学好数学的愿望与信心.

3、教学重点:对二次函数概念的`理解。

4、教学难点:由实际问题确定函数解析式和确定自变量的取值范围。

三、教法学法

1、从创设情境入手,通过知识再现,孕伏教学过程

2、从学生活动出发,通过以旧引新,顺势教学过程

3、利用探索、研究手段,通过思维深入,领悟教学过程

四、教学过程:

(一)复习提问

1.什么叫函数?我们之前学过了那些函数?

(一次函数,正比例函数,反比例函数)

2.它们的形式是怎样的?

(y=kx+b,k≠0;y=kx ,k≠0;y= , k≠0)

3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k≠0的条件? k值对函数性质有什么影响?

?设计意图】复习这些问题是为了帮助学生弄清自变量、函数、常量等概念,加深对函数定义的理解.强调k≠0的条件,以备与二次函数中的a进行比较.

(二)引入新课

函数是研究两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。看下面三个例子中两个变量之间存在怎样的关系。(电脑演示)

例1、(1)圆的半径是r(cm)时,面积s (cm)与半径之间的关系是什么?

解:s=πr(r>0)

例2、用周长为20m的篱笆围成矩形场地,场地面积y(m)与矩形一边长x(m)之间的关系是什么?

解: y=x(20/2-x)=x(10-x)=-x+10x (0

例3、设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存。如果存款额是100元,那么请问两年后的本息和y(元)与x之间的关系是什么(不考虑利息税)?

解: y=100(1+x)

=100(x+2x+1)

= 100x+200x+100(0

教师提问:以上三个例子所列出的函数与一次函数有何相同点与不同点?

?设计意图】通过具体事例,让学生列出关系式,启发学生观察,思考,归纳出二次函数与一次函数的联系: (1)函数解析式均为整式(这表明这种函数与一次函数有共同的特征)。(2)自变量的最高次数是2(这与一次函数不同)。

(三)讲解新课

以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。

二次函数的定义:形如y=ax2+bx+c (a≠0,a, b, c为常数) 的函数叫做二次函数。

巩固对二次函数概念的理解:

1、强调“形如”,即由形来定义函数名称。二次函数即y 是关于x的二次多项式(关于的x代数式一定要是整式)。

2、在 y=ax2+bx+c 中自变量是x ,它的取值范围是一切实数。但在实际问题中,自变量的取值范围是使实际问题有意义的值。(如例1中要求r>0)

3、为什么二次函数定义中要求a≠0 ?

(若a=0,ax2+bx+c就不是关于x的二次多项式了)

4、在例3中,二次函数y=100x2+200x+100中, a=100, b=200, c=100.

5、b和c是否可以为零?

由例1可知,b和c均可为零.

若b=0,则y=ax2+c;

若c=0,则y=ax2+bx;

若b=c=0,则y=ax2.

注明:以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c是二次函数的一般形式.

?设计意图】这里强调对二次函数概念的理解,有助于学生更好地理解,掌握其特征,为接下来的判断二次函数做好铺垫。

判断:下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出a、b、c.

(1)y=3(x-1)+1 (2)

(3)s=3-2t (4)y=(x+3)- x

(5) s=10πr (6) y=2+2x

(8)y=x4+2x2+1(可指出y是关于x2的二次函数)

?设计意图】理论学习完二次函数的概念后,让学生在实践中感悟什么样的函数是二次函数,将理论知识应用到实践操作中。

(四)巩固练习

1.已知一个直角三角形的两条直角边长的和是10cm。

(1)当它的一条直角边的长为时,求这个直角三角形的面积;

(2)设这个直角三角形的面积为scm2,其中一条直角边为xcm,求s关

于x的函数关系式。

?设计意图】此题由具体数据逐步过渡到用字母表示关系式,让学生经历由具体到抽象的过程,从而降低学生学习的难度。

2.已知正方体的棱长为xcm,它的表面积为scm2,体积为vcm3。

(1)分别写出s与x,v与x之间的函数关系式子;

(2)这两个函数中,那个是x的二次函数?

?设计意图】简单的实际问题,学生会很容易列出函数关系式,也很容易分辨出哪个是二次函数。通过简单题目的练习,让学生体验到成功的欢愉,激发他们学习数学的兴趣,建立学好数学的信心。

3.设圆柱的高为h(cm)是常量,底面半径为rcm,底面周长为ccm,圆柱的体积为vcm3

(1)分别写出c关于r;v关于r的函数关系式;

(2)两个函数中,都是二次函数吗?

?设计意图】此题要求学生熟记圆柱体积和底面周长公式,在这儿相当于做了一次复习,并与今天所学知识联系起来。

4. 篱笆墙长30m,靠墙围成一个矩形花坛,写出花坛面积y(m2)与长x之间的函数关系式,并指出自变量的取值范围.

?设计意图】此题较前面几题稍微复杂些,旨在让学生能够开动脑筋,积极思考,让学生能够“跳一跳,够得到”。

(五)拓展延伸

1. 已知二次函数y=ax2+bx+c,当 x=0时,y=0;x=1时,y=2;x= -1时,y=1.求a、b、c,并写出函数解析式.

?设计意图】在此稍微渗透简单的用待定系数法求二次函数解析式的问题,为下节课的教学做个铺垫。

2.确定下列函数中k的值

(1)如果函数y= xk^2-3k+2 +kx+1是二次函数,则k的值一定是

(2)如果函数y=(k-3)xk^2-3k+2+kx+1是二次函数,则k的值一定是

?设计意图】此题着重复习二次函数的特征:自变量的最高次数为2次,且二次项系数不为0.

(六) 小结思考:

本节课你有哪些收获?还有什么不清楚的地方?

?设计意图】让学生来谈本节课的收获,培养学生自我检查、自我小结的良好习惯,将知识进行整理并系统化。而且由此可了解到学生还有哪些不清楚的地方,以便在今后的教学中补充。

(七) 作业布置:

必做题:

1. 正方形的边长为4,如果边长增加x,则面积增加y,求y关于x 的函数关系式。这个函数是二次函数吗?

2. 在长20cm,宽15cm的矩形木板的四角上各锯掉一个边长为xcm的正方形,写出余下木板的面积y(cm2)与正方形边长x(cm)之间的函数关系,并注明自变量的取值范围。

选做题:

1.已知函数 是二次函数,求m的值。

2.试在平面直角坐标系画出二次函数y=x2和y=-x2图象

?设计意图】作业中分为必做题与选做题,实施分层教学,体现新课标人人学有价值的数学,不同的人得到不同的发展。另外补充第4题,旨在激发学生继续学习二次函数图象的兴趣。

五、教学设计思考

以实现教学目标为前提

以现代教育理论为依据

以现代信息技术为手段

贯穿一个原则——以学生为主体的原则

突出一个特色——充分鼓励表扬的特色

渗透一个意识——应用数学的意识

数学必修一教案篇2

教材分析

本节课重在探究等比数列的前n项和公式的推导及简单的应用。教学中注重公式的形成过程及数学思想方法的渗透,并揭示公式的结构特征和内在联系.就知识的应用价值来看,它是从大量数学问题和现实问题中抽象出来的模型,在公式推导中所蕴含的数学思想方法在各种数列求和问题中有着广泛的应用.就内容的人文价值上看,它的'探究与推导需要学生观察、分析、归纳、猜想,有助于培养学生的创新思维和探索精神,是培养学生数学的思考问题的良好载体.

教学目标

知识与技能: 掌握等比数列的前n项和公式以及推导方法;会用等比数列的前n项和公式解决有关等比数列的一些简单问题.

过程与方法: 经历等比数列前n 项和的推导过程,总结数列求和方法,体会数学中的思想方法.

情感态度与价值观:通过教材中的实际引例,激发学生学习数学的积极性及学习数学的主动性.

教学重点

等比数列的前n项和公式推导及公式的简单应用

教学难点

等比数列的前n项和公式推导过程和思想方法

教学过程

Ⅰ、课题导入

[创设情境]

[提出问题] “国王对国际象棋的发明者的奖励”的故事

Ⅱ、讲授新课

[分析问题]如果把各格所放的麦粒数看成是一个数列,我们可以得到一个等比数列,它的首项是1,公比是2,求第一个格子到第64个格子各格所放的麦粒数总合就是求这个等比数列的前64项的和。下面我们先来推导等比数列的前n项和公式。

数学必修一教案篇3

一、教学内容分析

圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象、恰当地利用xx解题,许多时候能以简驭繁。因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。

二、学生学习情况分析

我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。

三、设计思想

由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情、在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率、

四、教学目标

1、深刻理解并熟练掌握圆锥曲线的定义,能灵活应用xx解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。

2、通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。

3、借助多媒体辅助教学,激发学习数学的兴趣、

五、教学重点与难点:

教学重点

1、对圆锥曲线定义的理解

2、利用圆锥曲线的定义求“最值”

3、“定义法”求轨迹方程

教学难点:

巧用圆锥曲线xx解题

六、教学过程设计

【设计思路】

开门见山,提出问题

例题:

(1)已知a(-2,0),b(2,0)动点m满足|ma|+|mb|=2,则点m的轨迹是()。

(a)椭圆(b)双曲线(c)线段(d)不存在

(2)已知动点m(x,y)满足(x1)2(y2)2|3x4y|,则点m的轨迹是()。

(a)椭圆(b)双曲线(c)抛物线(d)两条相交直线

【设计意图】

定义是揭示概念内涵的逻辑方法,熟悉不同概念的不同定义方式,是学习和研究数学的一个必备条件,而通过一个阶段的学习之后,学生们对圆锥曲线的定义已有了一定的认识,他们是否能真正掌握它们的本质,是我本节课首先要弄清楚的问题。

为了加深学生对圆锥曲线定义理解,我以圆锥曲线的定义的运用为主线,精心准备了两道练习题。

【学情预设】

估计多数学生能够很快回答出正确答案,但是部分学生对于圆锥曲线的定义可能并未真正理解,因此,在学生们回答后,我将要求学生接着说出:若想答案是其他选项的话,条件要怎么改?这对于已学完圆锥曲线这部分知识的学生来说,并不是什么难事。但问题(2)就可能让学生们费一番周折——如果有学生提出:可以利用变形来解决问题,那么我就可以循着他的思路,先对原等式做变形:(x1)2(y2)2这样,很快就能得出正确结果。如若不然,我将启发他们从等式两端的式子|3x4y|入手,考虑通过适当的变形,转化为学生们熟知的两个距离公式。

在对学生们的解答做出判断后,我将把问题引申为:该双曲线的中心坐标是,实轴长为,焦距为。以深化对概念的理解。

数学必修一教案篇4

第一章:空间几何体

1.1.1柱、锥、台、球的结构特征

一、教学目标

1.知识与技能

(1)通过实物操作,增强学生的直观感知。

(2)能根据几何结构特征对空间物体进行分类。

(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

(4)会表示有关于几何体以及柱、锥、台的分类。

2.过程与方法

(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。

(2)让学生观察、讨论、归纳、概括所学的知识。

3.情感态度与价值观

(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。

(2)培养学生的空间想象能力和抽象括能力。

二、教学重点、难点

重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

难点:柱、锥、台、球的结构特征的概括。

三、教学用具

(1)学法:观察、思考、交流、讨论、概括。

(2)实物模型、投影仪

四、教学思路

(一)创设情景,揭示课题

1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。

2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。

(二)、研探新知

1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。

2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?

3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。

4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。

5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?

请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?

6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。

7.让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。

8.引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。

9.教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。

10.现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成。请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?

(三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。

1.有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图)

2.棱柱的何两个平面都可以作为棱柱的底面吗?

3.课本p8,习题1.1 a组第1题。

4.圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?

5.棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?

四、巩固深化

练习:课本p7 练习1、2(1)(2)

课本p8 习题1.1 第2、3、4题

五、归纳整理

由学生整理学习了哪些内容

六、布置作业

课本p8 练习题1.1 b组第1题

课外练习 课本p8 习题1.1 b组第2题

1.2.1 空间几何体的三视图(1课时)

一、教学目标

1.知识与技能

(1)掌握画三视图的基本技能

(2)丰富学生的空间想象力

2.过程与方法

主要通过学生自己的亲身实践,动手作图,体会三视图的作用。

3.情感态度与价值观

(1)提高学生空间想象力

(2)体会三视图的作用

二、教学重点、难点

重点:画出简单组合体的三视图

难点:识别三视图所表示的空间几何体

三、学法与教学用具

1.学法:观察、动手实践、讨论、类比

2.教学用具:实物模型、三角板

四、教学思路

(一)创设情景,揭开课题

“横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图。

在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),你能画出空间几何体的三视图吗?

(二)实践动手作图

1.讲台上放球、长方体实物,要求学生画出它们的三视图,教师巡视,学生画完后可交流结果并讨论;

2.教师引导学生用类比方法画出简单组合体的三视图

(1)画出球放在长方体上的三视图

(2)画出矿泉水瓶(实物放在桌面上)的三视图

学生画完后,可把自己的作品展示并与同学交流,总结自己的作图心得。

作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图。

3.三视图与几何体之间的相互转化。

(1)投影出示图片(课本p10,图1.2-3)

请同学们思考图中的三视图表示的几何体是什么?

(2)你能画出圆台的三视图吗?

(3)三视图对于认识空间几何体有何作用?你有何体会?

教师巡视指导,解答学生在学习中遇到的困难,然后让学生发表对上述问题的看法。

4.请同学们画出1.2-4中其他物体表示的空间几何体的三视图,并与其他同学交流。

(三)巩固练习

课本p12 练习1、2 p18习题1.2 a组1

(四)归纳整理

请学生回顾发表如何作好空间几何体的三视图

(五)课外练习

1.自己动手制作一个底面是正方形,侧面是全等的三角形的棱锥模型,并画出它的三视图。

2.自己制作一个上、下底面都是相似的正三角形,侧面是全等的等腰梯形的棱台模型,并画出它的三视图。

1.2.2 空间几何体的直观图(1课时)

一、教学目标

1.知识与技能

(1)掌握斜二测画法画水平设置的平面图形的直观图。

(2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。

2.过程与方法

学生通过观察和类比,利用斜二测画法画出空间几何体的直观图。

3.情感态度与价值观

(1)提高空间想象力与直观感受。

(2)体会对比在学习中的作用。

(3)感受几何作图在生产活动中的应用。

二、教学重点、难点

重点、难点:用斜二测画法画空间几何值的直观图。

三、学法与教学用具

1.学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程。

2.教学用具:三角板、圆规

练习反馈

根据斜二测画法,画出水平放置的正五边形的直观图,让学生独立完成后,教师检查。

2.例2,用斜二测画法画水平放置的圆的直观图

教师引导学生与例1进行比较,与画水平放置的多边形的直观图一样,画水平放置的圆的直观图,也是要先画出一些有代表性的点,由于不能像多边那样直接以顶点为代表点,因此需要自己构造出一些点。

教师组织学生思考、讨论和交流,如何构造出需要的一些点,与学生共同完成例2并详细板书画法。

3.探求空间几何体的直观图的画法

(1)例3,用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体abcd-a’b’c’d’的直观图。

教师引导学生完成,要注意对每一步骤提出严格要求,让学生按部就班地画好每一步,不能敷衍了事。

(2)投影出示几何体的三视图、课本p15图1.2-9,请说出三视图表示的几何体?并用斜二测画法画出它的直观图。教师组织学生思考,讨论和交流完成,教师巡视帮不懂的同学解疑,引导学生正确把握图形尺寸大小之间的关系。

4.平行投影与中心投影

投影出示课本p17图1.2-12,让学生观察比较概括在平行投影下画空间图形与在中心投影下画空间图形的各自特点。

5.巩固练习,课本p16练习1(1),2,3,4

三、归纳整理

学生回顾斜二测画法的关键与步骤

四、作业

1.书画作业,课本p17 练习第5题

2.课外思考 课本p16,探究(1)(2)

1.3.1柱体、锥体、台体的表面积与体积

一、教学目标

1、知识与技能

(1)通过对柱、锥、台体的研究,掌握柱、锥、台的表面积和体积的求法。

(2)能运用公式求解,柱体、锥体和台全的全积,并且熟悉台体与术体和锥体之间的转换关系。

(3)培养学生空间想象能力和思维能力。

2、过程与方法

了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景。

(2)一元二次不等式

会从实际情境中抽象出一元二次不等式模型。

通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系。

会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图。

(3)二元一次不等式组与简单线性规划问题

会从实际情境中抽象出二元一次不等式组。

了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组。

会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决。

1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。

2、圆的方程

(1)标准方程,圆心,半径为r;

(2)一般方程

当时,方程表示圆,此时圆心为,半径为

当时,表示一个点;当时,方程不表示任何图形。

(3)求圆方程的方法:

一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,

需求出a,b,r;若利用一般方程,需要求出d,e,f;

另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。

3、高中数学必修二知识点总结:直线与圆的位置关系:

直线与圆的位置关系有相离,相切,相交三种情况:

(1)设直线,圆,圆心到l的距离为,则有;

(2)过圆外一点的切线:k不存在,验证是否成立k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】

(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2

4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

设圆,

两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

当时两圆外离,此时有公切线四条;

当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;

当时两圆相交,连心线垂直平分公共弦,有两条外公切线;

当时,两圆内切,连心线经过切点,只有一条公切线;

当时,两圆内含;当时,为同心圆。

注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线

5、空间点、直线、平面的位置关系

公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。

应用:判断直线是否在平面内

用符号语言表示公理1:

公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线

符号:平面α和β相交,交线是a,记作α∩β=a.

符号语言:

公理2的作用:

它是判定两个平面相交的方法。

它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。

它可以判断点在直线上,即证若干个点共线的重要依据。

公理3:经过不在同一条直线上的三点,有且只有一个平面。

推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。

公理3及其推论作用:它是空间内确定平面的依据它是证明平面重合的依据

公理4:平行于同一条直线的两条直线互相平行

高中数学必修二知识点总结:空间直线与直线之间的位置关系

异面直线定义:不同在任何一个平面内的两条直线

异面直线性质:既不平行,又不相交。

异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线

异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角。两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。

求异面直线所成角步骤:

a、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。b、证明作出的角即为所求角c、利用三角形来求角

(7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。

(8)空间直线与平面之间的位置关系

直线在平面内——有无数个公共点。

三种位置关系的符号表示:aαa∩α=aaα

(9)平面与平面之间的位置关系:平行——没有公共点;αβ

相交——有一条公共直线。α∩β=b

2、空间中的平行问题

(1)直线与平面平行的判定及其性质

线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。

线线平行线面平行

线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,

那么这条直线和交线平行。线面平行线线平行

(2)平面与平面平行的判定及其性质

两个平面平行的判定定理

(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行

(线面平行→面面平行),

(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。

(线线平行→面面平行),

(3)垂直于同一条直线的两个平面平行,

两个平面平行的性质定理

(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。(面面平行→线面平行)

(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。(面面平行→线线平行)

3、空间中的垂直问题

(1)线线、面面、线面垂直的定义

两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。

线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。

平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。

(2)垂直关系的判定和性质定理

线面垂直判定定理和性质定理

判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。

性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

面面垂直的判定定理和性质定理

判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。

4、空间角问题

(1)直线与直线所成的角

两平行直线所成的角:规定为。

两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。

两条异面直线所成的角:过空间任意一点o,分别作与两条异面直线a,b平行的直线,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角。

(2)直线和平面所成的角

平面的平行线与平面所成的角:规定为。平面的垂线与平面所成的角:规定为。

平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角。

求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”。

在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,

在解题时,注意挖掘题设中两个主要信息:(1)斜线上一点到面的垂线;(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线。

(3)二面角和二面角的平面角

二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。

二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角。

直二面角:平面角是直角的二面角叫直二面角。

两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角

求二面角的方法

定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角

垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角

必修二知识点总结:解三角形

(1)正弦定理和余弦定理

掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。

(2)应用

能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。

数学必修一教案篇5

教学目标:

1.理解平面直角坐标系的意义;掌握在平面直角坐标系中刻画点的位置的方法。

2.掌握坐标法解决几何问题的步骤;体会坐标系的作用。

教学重点:

体会直角坐标系的作用。

教学难点:

能够建立适当的直角坐标系,解决数学问题。

授课类型:

新授课

教学模式:

启发、诱导发现教学.

教 具:

多媒体、实物投影仪

教学过程:

一、复习引入:

情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位置机器运动的轨迹。

情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。要出现正确的背景图案,需要缺点不同的画布所在的位置。

问题1:如何刻画一个几何图形的位置?

问题2:如何创建坐标系?

二、学生活动

学生回顾

刻画一个几何图形的位置,需要设定一个参照系

1、数轴 它使直线上任一点p都可以由惟一的实数x确定

2、平面直角坐标系

在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点p都可以由惟一的实数对(x,y)确定。

3、空间直角坐标系

在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点p都可以由惟一的实数对(x,y,z)确定。

三、讲解新课:

1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足:

任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置

2、确定点的位置就是求出这个点在设定的坐标系中的坐标

四、数学运用

例1 选择适当的平面直角坐标系,表示边长为1的正六边形的顶点。

变式训练

如何通过它们到点o的距离以及它们相对于点o的方位来刻画,即用”距离和方向”确定点的位置

例2 已知b村位于a村的正西方1公里处,原计划经过b村沿着北偏东60的方向设一条地下管线m.但在a村的西北方向400米出,发现一古代文物遗址w.根据初步勘探的结果,文物管理部门将遗址w周围100米范围划为禁区.试问:埋设地下管线m的计划需要修改吗?

变式训练

1一炮弹在某处爆炸,在a处听到爆炸的时间比在b处晚2s,已知a、b两地相距800米,并且此时的声速为340m/s,求曲线的方程

2在面积为1的中,,建立适当的坐标系,求以m,n为焦点并过点p的椭圆方程

例3 已知q(a,b),分别按下列条件求出p 的坐标

(1)p是点q 关于点m(m,n)的对称点

(2)p是点q 关于直线l:x-y+4=0的对称点(q不在直线1上)

变式训练

用两种以上的方法证明:三角形的三条高线交于一点。

思考

通过平面变换可以把曲线变为中心在原点的单位圆,请求出该复合变换?

五、小 结:本节课学习了以下内容:

1.平面直角坐标系的意义。

2. 利用平面直角坐标系解决相应的数学问题。

六、课后作业:

数学必修一教案篇6

教学目标:

1·进一步理解对数函数的性质,能运用对数函数的相关性质解决对数型函数的常见问题·

2·培养学生数形结合的思想,以及分析推理的能力·

教学重点:

对数函数性质的应用·

教学难点:

对数函数的性质向对数型函数的演变延伸·

教学过程:

一、问题情境

1·复习对数函数的性质·

2·回答下列问题·

(1)函数y=log2x的值域是;

(2)函数y=log2x(x≥1)的值域是;

(3)函数y=log2x(0

3·情境问题·

函数y=log2(x2+2x+2)的定义域和值域分别如何求呢?

二、学生活动

探究完成情境问题·

三、数学运用

例1求函数y=log2(x2+2x+2)的定义域和值域·

练习:

(1)已知函数y=log2x的值域是[—2,3],则x的范围是·

(2)函数,x(0,8]的值域是·

(3)函数y=log(x2—6x+17)的`值域·

(4)函数的值域是·

例2判断下列函数的奇偶性:

(1)f(x)=lg(2)f(x)=ln(—x)

例3已知loga 0·75>1,试求实数a取值范围·

例4已知函数y=loga(1—ax)(a>0,a≠1)·

(1)求函数的定义域与值域;

(2)求函数的单调区间·

练习:

1·下列函数(1)y=x—1;(2)y=log2(x—1);(3)y=;(4)y=lnx,其中值域为r的有(请写出所有正确结论的序号)·

2·函数y=lg(—1)的图象关于对称·

3·已知函数(a>0,a≠1)的图象关于原点对称,那么实数m= ·

4·求函数,其中x [,9]的值域·

四、要点归纳与方法小结

(1)借助于对数函数的性质研究对数型函数的定义域与值域;

(2)换元法;

(3)能画出较复杂函数的图象,根据图象研究函数的性质(数形结合)·

五、作业

课本p70~71—4,5,10,11·