五年级数学除法教案7篇

时间:2024-09-11 作者:Monody

教案有着明确的教学重点,能够帮助学生聚焦重要知识,提高学习成效,通过教案的制定使教师能够在课堂上教学重点与目标,下面是网客范文小编为您分享的五年级数学除法教案7篇,感谢您的参阅。

五年级数学除法教案7篇

五年级数学除法教案篇1

教学内容:

教材第27~28页的内容及练习。

教学目标:

1.借助实际操作和图形语言,理解一个数除以分数的意义和基本算理。

2.掌握一个数除以分数的计算方法,并能正确计算。

3.培养学生解决简单实际问题的能力。

教学重难点:

1.掌握一个数除以分数的计算方法,并能正确计算。

2.整数除以分数的计算法则推导过程。

教学过程:

一、创设情景 激趣揭题

1.猜一猜:有4个苹果,每人得到2个,1个,1/2个,你知道这三 次分别是几个人分苹果吗?

设计意图:设疑激趣。 明确目标。

二、扶放结合 探究新知

1.分一分,引导感知一个数除以分数的意义。

2.画一画:引导完成27页的画一画,理解分数除以分数的计算方法。

3.引导完成28页的填一填,想一想,你发现了什么?

4.引导归纳计算方法。

设计意图: 理解一个数除以分数的意义。 总结归纳计算法则。

三、反馈矫正

出示p28的`试一试。

1.统一分数除法的计算法则。

2.指导完成p28练一练的1~4题。

四、小结评价 布置预习

1.引导小结:通过这节课的学习,你有什么收获?

五年级数学除法教案篇2

学习目标:

1.借助实际操作和图形语言,理解一个数除以分数的意义和基本算理。

2 .掌握一个数除以分数的计算方法,并能正确进行计算。

学习重点:理解一个数除以分数的意义和基本算理。

学习难点:运用分数除法的计算方法解决实际问题。

学习内容:

一、分一分

有4张同样的圆形纸片。

(1)每2张一份,可以分成多少份?

画一画:

列示:

(2)每1张一份,可以分成多少份?

画一画:

列示:

(3)每1/2张一份,可以分成多少份?

画一画:

列示:

(4)每1/3张一份,可以分成多少份?

画一画:

列示:

(5)每1/4张一份,可以分成多少份?

画一画:

列示:

二、画一画

1.有1根2米长的绳子。

(1)截成每段长1/3米,可以截成几段?

画一画:

列示:

(2)截成每段长2/3米,可以截成几段?

画一画:

列示:

2.3/4里面有几个1/8?

画一画:

列示:

三、填一填,想一想

在〇里填上“>”“

4÷1/2〇4×2 4÷1/3〇4×3 4÷1/4〇4×4

2÷1/3〇2×3 2÷2/3〇2×3/2 3/4÷1/8〇 ×8

你发现了什么?( )

四、试一试

8÷6/7 5/12÷3

你能把“除以一个整数(零除外),等于乘这个整数的'倒数。”和“除以一个分数,等于乘这个分数的倒数。”这两句画合并成一句话吗?

( )

五年级数学除法教案篇3

教学目标:

1、理解分数除以整数的意义,掌握分数除以整数的计算方法,并能正确计算。

2、通过实践活动和自主探究,培养学生动手能力及发现问题、解决问题的能力。

3、通过一系列“自主探究----得出结论”的过程,体验其中的成就感,增强学生学习数学的自信心。

教学重点:

理解分数除法的意义,掌握分数除以整数的计算方法。

教学难点:

分数除以整数计算法则的推导过程。

教学准备:

多媒体课件、长方形纸等。

教学过程:

一、旧知复习,蕴伏铺垫

复习时我安排了两道练习,引发学生记忆的再现,为学生选择原有知识中的有效的信息做好铺垫。

1、展示问题:

(1)什么是倒数?

(2)你能举出几对倒数的例子吗?

(3)如何求一个数的倒数?

2、展示多媒体:笑笑和淘气去买白糖。

问题1:他们每人买了两袋白糖,一共买了多少袋白糖?

问题2:这些白糖一共重2千克,每袋白糖有多重?

问题3:如果笑笑家15天吃完一袋白糖,那么平均每天吃多少千克?

二、创设情境,理解意义

展示多媒体:把一张纸的4/7平均分成2份,每份是这张纸的几分之几?

1、利用准备好的`纸,先把纸平均分成7份,再涂出其中的4份,然后再将这4份平均分成2份,将其中1份涂色,最后看看涂上色的这部分占整张纸的几分之几。

2、汇报

三、大胆猜想

学生通过操作,明白2/7是怎样得到的。那么到底应该怎样计算分数除法呢?让学生大胆猜想分数除法的计算方法。学生根据刚才的推理,很容易得出“分母不变,被除数的分子除以整数得到商的分子”的计算方法。

四、再次探究

1、学生很快发现有些算式是无法用以上结论计算出来的,如4/7÷3,分子4除以3是除不尽的。

2、让学生动手分一分、涂一涂,然后再让他们进行小组交流。

3、得出分数除法的计算方法:除以一个整数(零除外)等于乘这个整数的倒数。

除以一个整数(零除外)等于乘这个整数的倒数。

五年级数学除法教案篇4

教学目标:使学生进一步理解分数与除法的关系,学会根据分数与除法的关系,把低级单位的名数改写成高级单位的名数以及解答"求一个数是另一个数的.几分之几"的应用题。

教学重点:名数之间的互化。

教学难点:名数之间的互化的实质理解。

教学课型:新授课

教具准备:课件

教学过程:

一,铺垫复习,导入新知

1,用分数表示下面各式的商。[课件1]

5÷6 14÷25 12÷12 18÷35

2,在括号里填上适当的数或字母。[课件2]

12÷35=( )/( ) ( )÷( )=4/7

( )÷( )=a/b 8÷( )=( )/9

( )÷17=7/( ) 1÷( )=( )/d

3,把5个饼分给9孩子吃,每个孩子分得多少个 [课件3]

4,小新家养鸡30只,养鸭10只。养的鸡是鸭的几倍

5,填空。[课件4]

30分米=( )米 180分=( )小时

二,变式类推,深化理解

1,教学p91 。例4: (1)3分米是几分之几米

(2)17分是几分之几时

思考:a,这两题与复习题有什么区别 有什么相同

b,第(1)题要把分米数改写成米数应该怎么办 怎样计算

板书: 3÷10=3/10(米)

c,第(2)小题是要将什么改写成什么 怎样求得

板书: 17÷60=17/60(时)

※ p91 。做一做

2,教学p92 。例5: 小新家养鹅7只,养鸭10只。养的鹅是鸭的几分之几

(1)提问:a,用谁作标准 该怎样计算

b,与复习题对比,有哪些不同点和相同点

(2)归纳。

求一个数是另一个数的几倍与求一个数是另一个数的几分之几,都用除法计算,除数都作标准数,得到的商都表示两个数之间的关系,都不能写单位名称。

※ p92 。做一做

习前提问:说说用什么作标准数

三,加强练习,深化概念

1,p93 。4

要求说说题目的思路和单位之间的进率。

2,p93 。6

提问:这两个问题中的标准量相同吗 请说说标准量分别是什么

3,p93 。7

四,全课小结,抽象概括

1,本节课所学的两个内容分别是什么

2,你还有问题要问吗

五,家作。

p93 。5,8

五年级数学除法教案篇5

教学内容:

五年级下册教科书第65—66页。

教学目标:

1.在具体的问题情境中,探究和理解分数与除法的关系,并能正确地用分数表示两个整数相除的商,会用两种方法叙述分数的意义。

2.在探究过程中,培养学生观察、比较、归纳等探究的能力。

3.体会知识来源于实际生活的需要,激发学习数学的积极性。

教学重点:

经历探究过程,理解和掌握分数与除法的关系。

教学难点:

通过操作,让学生理解一个分数可以表示的两种意义。

教材分析:

?分数与除法》是人教版小学数学五年级下册第四单元《分数》第二课时的教学内容。是在对分数意义有初步认知基础上的深入理解。在这节数学课中,不仅要让学生掌握分数与除法之间直观的位置关系,还要从分数意义中理解分数与除法的联系。所以在本课的的设计中,以分数意义的辨析贯穿始终。因为分数的意义,本身就是除法的界定,这才是分数与除法最根本的联系。

本节教学内容重视引导学生在观察比较中发现分数与除法的关系,探究整数除法得不到整数商的情况时,可以用分数表示;在表示整数除法的商时,用除数作分母,用被除数做分子。教材从“分蛋糕”的实际情境引入,引导学生列出除法算式,并结合分数的意义得出结果,然后引导学生比较几个算式,探索发现分数与除法的关系。根据分数与除法的关系,让学生用分数表示两数相除的商或把分数写成两数相除的形式。

教具学具:

课件,模型。

教学设计

一、导入

师:孩子们,上课之前先考验下大家,(出示课件)这个谜底是什么?

生:月饼。

师:你们的课外知识真丰富,你们喜欢吃月饼吗?

生:喜欢。

师:老师也喜欢。在月饼中也含有许多数学知识,我们一起来看看吧(出示课件),把6块月饼平均分给3个小朋友,每人分得多少块?怎样列式计算?

生:2块,6÷3=2(块)。(板书)

师:说得真棒,要是声音再大些就更好了,我们再来看下一个问题,把1块月饼平均分给2个小朋友,每人分几块?怎样列式计算?

生:0.5块,1÷2=0.5(块)。(板书)

师:表达得特别清楚,让大家一听就懂。老师就继续考验大家,如果把1块月饼平均分给3个小朋友,每人分几块?怎样列式计算?

师:你为你们组又增添了一份光彩。看来大家已经能够解决分月饼的问题了,不用学具直接说出5除于7等于多少?

生:七分之五。

师:非常正确。我们再来看这些算式,整数除法得不到整数商的时侯,可以用什么数表示商?

生:可以用分数表示。

师:在表示整数除法的商时,用谁作分母?用谁做分子?

生:用被除数作分子,除数作分母。

师:那么分数与除法有什么样的`关系呢?谁能用语言概括下?

生:被除数除以除数等于除数分之被除数。

师:你表达得这么清晰流畅,了不起!

师总结:可以用分数表示整数除法的商,用除数作为分母,被除数作为分子,除号相当于分数中的分数线。反过来,一个分数也可以看作两个数相除,分数的分子相当于除法中的被除数,分母相当于除数,分数线相当于除号。所以,分数与除数的关系我们可以用式子来表示为:被除数÷除数=被除数/除数(板书)。用字母表示是?

生:a÷b= a/b(b≠0)(板书)

师:这个关系式里每个数的范围要注意什么?

生:因为在除法里除数不能是零,所以分数的分母也不能是零。即b≠0。

师:想一想分数与除法有哪些联系和区别?

教师强调:分数是一种数,但也可以看作两个数相除(分数的分子相当于除法中的被除数,分母相当于除数)。除法是一种运算。

师:今后我们再看分数时,会有两种意义。(把“1”平均分成4份,表示这样3份的数,也可以是把“3”平均分成4份,表示这样1份的数。)

二、巩固练习

师:你们知道阿凡提吗?你有他聪明吗?敢不敢挑战他?我们来闯关,大家有信心吗?

1.1.用分数表示下面各式的商。

(1)3÷2 =()

(2)2÷9 =()

(3)7÷8 =()

(4)5÷12 =()

(5)31÷5 =()

(6)m÷n =()n≠0

2.把5千克糖平均分成7份,每份是( )千克;把1千克糖平均分成7份,5份是( )千克;也就是说5千克糖的( )和1千克糖

的( )是相等的

三、课堂小结

说说你的收获是什么?重点说说分数与除法的关系。

结束语:今天我们通过自己的努力,发现并学会了这么多知识,老师真为你们骄傲!其实生活中有更多的知识等着我们去发现、探索,快做个有新人吧,你会成长得更快!

四、作业布置

练习十二第1,3题。

板书设计

分数与除法

被除数÷除数=被除数/除数

a÷b= a/b(b≠0)

教学反思

这节课在引入课题之前,先利用谜语激发学生兴趣,引进分数,复习旧知。在探索新知时,从想象中每人2个饼,到一张饼,把一张饼平均分给4个人,每人能得到几块?有了刚才的复习知识进行铺垫、迁移,很容易能用算式1÷4来计算,学生很快会说出1/4,这时我会再提问:为什么是1/4?你是怎么分得?学生用准备的圆片分一分;接着出示:学生一步步经历了分得过程,对分数的意义就理解得更好了,也就明白了为什么是3/4。当用分数表示整数除法的商时,用除数作分母,用被除数作分子。反过来,一个分数也可以看作两个数相除。可以理解为把“1”平均分成4份,表示这样的3份;也可以理解为把“3”平均分成4份,表示这样的1份。也就是说,分数与除法之间的关系的理解、建立过程,实质上是与分数的意义的拓展同步的。教学之后,再来反思自己的教学,发现就小学阶段的数学知识存储于学生脑海里的状态而言,除了抽象性的之外,应当是抽象与具体可以转换的数学知识。

五年级数学除法教案篇6

第课时分数与除法

1、通过学习,使学生进一步理解分数的意义,知道分数还可以表示除法的商,被除数相当于分数的分子,除数相当于分数的分母,学生能够用分数表示整数除法的商。

2、通过学习,使学生进一步理解分数的意义,知道分数还可以表示数量,理解并掌握1个的几分之几就是几分之几个,几个的几分之一就是几分之几个。

3、能运用分数与除法的关系解决相关的问题。

4、让学生经历分数与除法的关系的探究过程,经历求一个数是另一个数的几分之几的解答过程。

?重点】理解和掌握分数与除法的关系。

?难点】理解用分数可以表示两个数相除的商。

?教师准备】 ppt课件,口算卡片。

?学生准备】 3个完全相同的圆片,剪刀。

填一填。

(1)表示的意义是()。

(2)的分数单位是(),它有()个这样的分数单位。

?参考答案】

(1)4个是多少

(2)7

老师出示口算卡片,学生口答。

8÷4= 15÷5= 12÷3=

5÷4= 6÷5= 7÷3=

师:比较这6道题的商,你发现了什么

预设生:上面3题的.商没有余数,下面3题的商都有余数。

师:以前计算整数除法时,如果遇到除不尽或得不到整数商的情况,我们就只算到个位,然后写出余数是几,有了分数以后,就可以解决这个问题了。除法的商怎么能用分数表示呢除法与分数有什么关系呢这就是我们今天要研究的问题。(老师板书课题:分数与除法)

由比较两组口算题的结果引入课题,使学生明确用分数可以表示除法的商。

师:请同学们回忆一下,在计算除法时,如果遇到除不尽或得不到整数商的情况,我们是怎样处理的。

预设生:可以用小数表示商,或者除到个位后,用余数表示结果。

师:你们知道吗有了分数,再遇到这种情况,我们就可以用分数来表示商。想不想知道怎样用分数来表示除法的商(想)要想知道怎样表示,就要先理解分数与除法的关系。(老师板书课题:分数与除法)

通过老师提问,引起学生思考,激发学习欲望。

一、教学例1,掌握用分数表示除法的商的方法。

1、ppt出示例1。

(1)学生看图、读题,思考解答方法。

(2)指名回答:求每人分得多少个,怎样列式

预设生:根据题意应该列式为:1÷3。

(3)用ppt出示:用一个圆表示一个蛋糕,把一个圆平均分成3份,其中1份涂色。让学生根据图意说出结果是多少。

预设生:每人分得个。

老师根据学生回答板书:1÷3=(个)。

2、巩固练习。

用分数表示下面各题的商。

3÷7= 5÷8= 9÷10=

21÷32= 4÷11= 6÷13=

?参考答案】

使学生了解用分数表示商的方法。

二、教学例2,使学生理解分数与除法的关系。

1、ppt出示例2。

(1)学生看图、读题,思考解答方法。

(2)指名回答:求每人分得多少个,怎样列式

预设生:根据题意应该列式为:3÷4。

(3)让学生拿圆片代替月饼实际分分,可能有不同的分法。然后让学生汇报。

(4)用ppt出示:把3个月饼平均分成4份,其中1份是3个四分之一个月饼,再把这3个四分之一拼起来,可以看出得到了四分之三个月饼。然后让学生说出结果是多少。

预设生:每人分得个。

老师根据学生的回答进行板书:3÷4=(个)。

2、老师引导学生观察除法算式与分数,探究它们之间的关系。

(1)用文字进行表述例1和例2的算式。

1÷3=

3÷4=

被除数÷除数的结果怎样表示得到:

被除数÷除数=

(2)学生在小组中学习用语言描述分数与除法之间的关系,然后指名回答。

预设生:被除数相当于分数中的分子,除数相当于分数中的分母,除号相当于分数中的分数线。

(3)小组讨论,用字母表示出分数与除法的关系,然后派代表发言。

预设生:a÷b=。

(4)引导学生思考b可以是0吗学生通过小组讨论后明确,因为除数不能为0,所以分数的分母不能为0,因此b也不能等于0。

老师根据学生的回答进行板书。

a÷b=(b≠0)

被除

除数

(5)教师小结:现在学习了分数与除法的关系,复习题中表示的意义,还可以看作把“4”平均分成5份,表示这样一份的数。

通过小组讨论,使学生明确分数与除法的关系。

三、教学例3,使学生经历求一个数是另一个数的几分之几的过程,进一步理解分数的意义,知道分数还可以表示两种数量比较的关系。

1、ppt出示例3。

(1)学生读题,理解题意。

(2)出示自学要求:

①想一想,答案是多少

②有什么办法说明自己的答案是正确的怎样说明

③题中的两个问题有什么关系

学生根据自学要求翻开教材第50页,自主学习、交流,老师巡视了解学情,对学生进行指导。

(3)组织学生汇报自学情况,展示答案。

自学要求①:

预设生:求“鹅的只数是鸭的几分之几”就是求7只是10只的几分之几,用除法计算,列式为:7÷10,根据分数与除法的关系可知结果是。求鸡的只数是鸭的多少倍,也用除法计算:20÷10=2。

自学要求②:

预设生:可以通过画图分析,证明自己的答案是正确的。

(根据学生回答,展示学生画的图或用ppt出示教材第50页的图)

自学要求③:

预设生:第1问是求一个数是另一个数的几分之几;第2问是求一个数是另一个数的几倍。这两个问题都用除法计算。

2、老师引导学生小结:求一个数是另一个数的几分之几,或几倍,都用除法计算。两个数相除,如果商是整数,那么用几倍来表示;如果商不是整数,那么用几分之几来表示。(老师板书)

3、师:根据题意,你们还能提出其他的数学问题并解答吗

(1)学生在小组里讨论,提出问题并解答。

(2)各小组展示提出的问题和解答的过程。

预设生1:我们提出的问题是:鹅的只数是鸡的几分之几解答是:7÷20=。

生2:我们提出的问题是:鸭的只数是鸡的几分之几解答是:10÷20=。

……

4、巩固练习。

五、(1)班有男生23人,女生22人。

(1)女生人数是男生人数的几分之几

(2)女生人数是全班人数的几分之几

(3)男生人数是全班人数的几分之几

学生独立解答,指名回答,集体订正。

五年级数学除法教案篇7

设计说明

苏霍姆林斯基曾说过:“引导学生借助已有的经验去获取知识,这是最高的教学技巧之所在。”本节课的教学通过让学生动手操作、自主探究、合作交流等方式,使学生经历“探究——发现——验证——修改”的过程。通过一系列的活动,使学生完成了知识的自我构建,同时也加深了对分数除以整数的意义的理解,符合学生的发展需要。

另外,本节课的教学设计还遵循学生的认知规律和年龄特点,对计算进行探究式教学。让学生以自主探究和合作交流的方式,在分析问题和解决问题的过程中体验成功的喜悦,不仅使学生获得了知识,发展了智力,还激发了学生学习数学的兴趣

课前准备

教师准备 ppt课件、长方形包装纸

学生准备 长方形纸

教学过程

⊙创设情境,提出问题

1.问题导入。

师:同学们,我们学过整数除以整数(0除外),也知道了整数除法的意义。今天我们将学习分数除法。那么分数除法的意义是什么呢?它和整数除法的意义是否相同呢?下面就让我们带着疑问一起来探究一下几个小朋友分饼的问题。

请你们列出算式并计算。

(1)每人吃张饼,4个人共吃多少张饼?

(2)把2张饼平均分给4个人,每人分得多少张饼?

(3)有2张饼,每人分得张饼,可以分给几个人?

(引导学生观察上面的三道题,并说一说它们都是已知什么,求什么)

2.揭示分数除法的意义。

讨论:(3)题中涉及了分数除法,想一想,分数除法的意义和整数除法的意义相同吗?

总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

设计意图:通过对一组题的探究和对比,使学生发现分数除法的意义与整数除法的意义相同,这样新旧知识的迁移过渡,可以使学生对分数除法的意义理解起来更加容易。

⊙合作交流,探究新知

1.引导参与,探究新知。

(1)出示教材55页例题。

师:(出示一张长方形的包装纸)老师想用这张漂亮的包装纸把送给妈妈的礼物包装起来,可是这张纸太大了,把它的平均分成2份就够了,每份是这张纸的几分之几呢?

(2)动手操作,分一分,涂一涂。

师:请大家拿出一张长方形纸,涂色表示出这张纸的。

(学生动手操作,教师巡视指导)

师:把一张长方形纸的平均分成2份,想一想,是把哪一部分平均分成了2份?其中的一份是多少呢?请大家用自己喜欢的颜色表示出来。

(学生活动,教师指导)

(3)观察发现。

师:通过画图,你发现了什么?能用一个算式表示出涂色的过程吗?

预设

(教师利用课件配合学生汇报)

生1:把平均分成2份,每份是2个小格,占这张纸的`。

生2:里面有4个,平均分成2份,每份就是2个,是,即÷2=。

设计意图:通过涂一涂的活动,在教师的引导下,让学生列出除法算式,使学生进一步理解、感受分数除法的意义。

2.初探算法。

师:如果不看图,你会计算÷2吗?你能提出大胆的猜想吗?

预设

生:分母不变,被除数的分子除以整数得到的商作商的分子。

提出质疑,验证猜想,理解新知。

(1)尝试验证,发现问题。

师:科学的验证不是仅通过计算一两道题就能得出结论的,你们能不能自己设计一道分数除以整数(0除外)的计算题来验证刚才的猜想是否正确呢?

(学生汇报验证的结果)

师:为什么有些题目能很顺利地算出来,而有些题目却不能很快地算出准确的答案呢?(分数的分子不能被除数整除)