蒙氏数学观后感7篇

时间:2025-09-28 作者:couple

撰写观后感不仅是记录,更是理解影片内涵的重要工具,写观后感使我们对影片的情节发展有了更深刻的思考,下面是网客范文小编为您分享的蒙氏数学观后感7篇,感谢您的参阅。

蒙氏数学观后感7篇

蒙氏数学观后感篇1

爱因斯坦说过一句很有趣的话:“这世上最难以被人理解的地方就是它居然真的可以被人理解。”这个世界与我们连接的纽带就是被数学选中的人们,看似难以理解的工作,却从中诞生出了f=ma、e=me2等简洁美好的公式。

数学的重要程度不言而喻,可以说是它推动了人类的发展。如果没有牛顿的下=(cg·)/r,我们连大炮都打不准;如果没有密码学,不列颠空战也许纳粹就会获胜。我们构造出了整个数学体系,是我们逐渐摸索到的自然原本就存在的秘密的体系。

数学家们往往也不知道自己在做什么,只是遵崇自己内心对美的向往,但就是在不知不觉间,从美索不达米亚的那些楔形的数学演化到混沌数学复杂代数,他们一层层剥开了自然的伪装。他们把人们丢掷出骨棒追逐野兽的原始时代发展到如今的机械社会。

那么数学又带给我们什么?或是说;我们能从做学逻辑中学到什么?

与数学逻辑很相似甚至相同的,我认为有搏奕学。数学对我影响最深的点也在这里。博弈是为了寻求生活中困境与冲突的最优解,这是博弈学中理性的一面,而对应在学数中就是它对问题或猜想的最优方案与步骤的严严谨性。而博弈中人们会尽量追求利益最大比--双赢,这是博弈学中感性的一面。对应在数学中就是它对美的追求。

在生活中,比如在为考试计划目标与提升时,数学的最优方案利于我合理估算出考试的最优情况。而几何对美与规律的.追求与对抽象能力的培养使我可更好的寻找自然之美。

数学的引人入胜之处在于尽管它是虚构的,但它就像人的大臂,操控着小臂(物理)与双手(科学)一点点攥住宇宙的真理。正因为人们对未知的追求,才有被数学选中的人们点亮现代的火把。

蒙氏数学观后感篇2

上回说到,这次寒假,我们的数学老师喻老师给我们布置了一个作业,观看纪录片《被数学选中的人》,并每集都写一篇观后感。

?被数学选中的人》的第二集里,讲述了许多数学家攻克难题的故事。比如求出圆周率,证明费马大定律。

有些数学难题可能穷尽数学家的一生也未必有答案,但这些数学家们仍然皓首穷经,孜孜以求。

数学研究跟发明创造最大不同在于它的滞后性。很多数学难题被解答出来,被证明出来了,也未必就能对人类现在的生活能提供多大的帮助。

这会让数学家的工作看起来毫无意义和成就,尤其是在现在这样一个求快求实的社会里。

但数学并不是真的无用。很多数学的理论知识,往往要到几十年,甚至几百年之后,才会被投入实际的应用中。

假如没有虚数,现代人就没有描述电磁场,假如没有数论,现代密码学无从诞生。

看完这集,我觉得数学家们真的是一群无名英雄。

有些数学家可能努力了一生,都看不到用自己的理论制造出来的.发明。

也有些数学家甚至可能一生都没有研究出成果来。

但他们毫无怨言,就这样默默地用自己的生命在为数学大厦添砖加瓦,默默地为人类更好的明天而奋斗终身。

看完这些数学家的故事,我的心久久不能平息。

所以说我们要认真对待学习,这样才对得起这些无名英雄呐!

蒙氏数学观后感篇3

今天我又看了被数学选中的人的第三集。

在这一集里,始终都在讨论一个问题:为什么我们要学数学?虽然最终也没有给出答案,但我要说说我的感想。首先,学数学应该是为了让我们思考起来方便点儿。因为当我们处理一件较为复杂的事情时,我们都会自发地调用头脑中的逻辑推理,以寻求一个最合理数学解决办法。其次,学数学能让我们的生活更有美感。里面提到了一个数学公式应用到现实生活的例子。比方说黄金分割(黄金比例),它被应用到了一些艺术品上,比如“蒙娜丽莎”,“断臂的维纳斯”。此外,16:9屏幕的电视机比4:3的看的更舒服,就是因为16:9的屏幕有像黄金分割的特征。最后,让孩子学习复杂的数学,是为一大堆小孩中选出热爱数学,并且有很好的思维能力的人。让那些聪明的.人,成为国家的栋梁,让国家的生活更美好,科技更发达。而我呢,刚好就不是这种人。我不是被数学选中的人,而是被数学抛弃的人。

但我在看了这几集《被数学选中的人》之后,突然也想以后好好学数学,更多地感受它的魅力。

蒙氏数学观后感篇4

这部纪录片共四集,每一集约25分。在第一集中,它回顾了数学从起源到现在的发展历史中、数学对人类文明的意义。

为什么总有一些人,在数次的失败和前赴后继的探索路上,一直在追寻着:数学是什么?数学的工作是怎样的?我们学数学到底有什么用?在大多数人的眼里,数学大概是我们生命中最抽象又最实用的一门学科。它带给不同人的感受也大相迳庭。有的人甘之若饴,有的人恨之入骨。不管是喜欢还是讨厌,当我们轻松的完成一次扫码支付时,数学的见识与实用在此刻达到了完美统一,这才意识到数学是有价值的`。从小学生都会的加减乘除到复杂到全世界只有几个人能看懂的推理演算,从我们住的房子、用的手机、听的音乐,到物理、化学、天文、气象、经济等,几乎所有学科都是在数学的指导下实现和严谨的推演。然而总有一些人,他们对数学有着天生的敏感,始终被数学眷顾。正是因为他们的存在,如此艰深抽象的数学才能孤傲地站立在科学的潮头,这部专题片把他们称为被“数学选中的人”。数学家说:数学的整个架构是人类在寻求万物规律时人为定义出来的。数学爱好者、研究者说:“数学有控制力、性感、纯粹、她的逻辑性很强,公式很美、比较浪漫的、给人安全感”。但对大部分普通人来说,数学代表曲折、深奥、枯燥、绞尽脑汁,并屡屡束手无策。为什么我们和这些对数学情有独钟的人感受如此不同呢?我们有必要了解一下数学是如何在人类世界诞生和发展的。

蒙氏数学观后感篇5

数学这种东西,我们看不见它,摸不着它,它却渗透了我们的生活,指导着宇宙的万物。它就是一张通行证,人类只有完全将它握在手中,才有可能打开通向世界的真理和本质的门。如此看来,数学真是个既高大上,也又接地气的强大工具。

“发明、研究数学的人真是太伟大了!”我也想过要成为一个能够像他们一样“青史留名”的人,毕竟我认为我姑且也算至少半个“被数学选中的人”。不过,面对浩如烟海的难题,以及一大堆一听就让人恐惧的知识点:圆锥曲线,各种奇形怪状的`函数、各种向量、一堆强大却总是不知道怎么用的定理......我的头都大了。可恶!想要成为青史留名的数学家实在是有难度。这些入门级的东西已经把我难住了。

不过,在看《被数学选中的人》第四集时,我的疑惑和顾虑逐渐被解开,大家都是这么过来的,所有人都要面临数学的难度。可是我又想了想,又变得难受起来!好像在对数学研究作出杰出贡献的人中,总有几位像是“开挂”一般,和我们这种“凡人”从一开始就不是一个档次。像欧拉,他13岁入读巴塞尔大学,16岁就取得了硕士学位,1年产出800页论文……这很明显不是正常人啊喂!我的疑惑和顾虑不减反增。

最后,我想清楚了。人家可是欧拉,我不是欧拉不是黎曼,不是牛顿,不是爱因斯坦......我何必要跟别人比?我做好自己不就得了?就像历史的推进,它不是由某一位君王、某几个人推动的,而是所有的人在一起推动的。数学的发展也一样,它不是由几个人推进的,而是由所有数学家、所有人对数学的热情堆砌起来的!能在其中贡献一份力,是我的荣幸,也是我的追求!

所以,我将努力作出更大的贡献。既然我已经走上这条路,那就一路走到天黑!我还是抱一点希望,希望自己可以"青史留名”。人总要有希望,万一实现了呢?

蒙氏数学观后感篇6

什么是数学?数学家的工作是什么?数学教会了我们什么?我们为什么要学数学?

我们可能从未思考过这些问题。这些问题的答案是什么?

在看完《被数学选中的人》后,我的心中有了自己的答案。

被数学选中的人是谁?他们是数学家们,物理学家们,天文学家们,工程师们......是一切对数学研究工作作出了卓越贡献的人和对教学报有极大热情的人。数学对于他们而言,是简洁的、干净的、理性的,高有创造力的,也是美丽的,数学的发展也得益于被数学选中的人们,

数学的发展经过了漫长的过程,它是一种抽象的概念,却完美符合了大自然的种种发展规律。它应规律而生,是人类文明最核心,最抽象的知识源泉,是人类认知、解释、传播世界本质规律的工具。数学是万物的基本,是坚定自然规律的抽象艺术,更是使人类得到巨大进步的齿轮,也正是因此,我们要努力学好数学。

那么,我们是否可以这么说:数学是一种用作解释规律的抽象工具,也是促进人类社会和其他学科发展、进步的根本。

数学家们正是在数学领域做出巨大贡献的人,他们的工作也很好解释--解决数学问题。他们有的穷尽一生解决数学难题,这对于我们普通人而言无疑是一件不可思议的事,或认为这是一种资源上的浪费。但事实上,这些拥有最聪明大脑的人类本身也不能完全确定自己所做的是否有意义,但他们依旧锲而不舍的去钻研。这种精神本身就是十分可贵的。就像“π”一样--数学家们用了2000余年的时间证明它是一个无限不循环小数,还有费马大定理,哥德巴赫猜想等,人们的生活离不开数学,这也是数学家们坚持不懈的一个重要原因,他们是可敬的。

我们作为中学生,作为祖国未米的栋梁,更要努力学数学,热爱数学,就像先前无数的数学家一样。学好数学,是社会进步的前提,更是我们每个人的应尽之义。

蒙氏数学观后感篇7

这部记录片,能带给你清晰的思路,从远古结绳计数、到37000年前非洲南部出土的一块狒狒的腓骨上面,清晰地呈现29倒v字型刻痕,再到公元前3000年4000年,人们记录的两个“5”,五只羊和五头牛的共性,把这个“5”抽象出来,这就有数字抽象的概念。到了3600年前莱茵德股本和莫斯科古本上记录了80多个数学问题和解答。很多问题是和分面包有关的,其中有一道题是如何让10个人平分9片面包,也就是每个人怎么拿到9/10片面包。古埃及人明显已经熟练掌握了分数的运用。

在梭草纸上,这道题的答案是9/10,等于2/3加1/5加1/30。实际的操作。将其中五片平均分为两块,正好十块,每人拿一块,把剩余四片平均分成三块儿,一共12小块,每人再拿一块,还剩两小块儿。

把这两小块儿每块再平均分成10小块。这样每个人又可以再拿一块儿,正好平均分完。这样切的.话,每个人分得的面包不但数量相等,连大小和块数也是一样的。在中国的记载中,公元前1000年左右,商高与周公对答,勾广三股修四进于五。这里的沟就是小腿骨,是大腿,这是古人从自身身体上发现并引申出的直角三角形中的两条直角边,如果勾股定理大概是由于人们在丈量土地和建造房屋时,要经常计算直角三角形的边长而创造的。到了后来为了建造房子需要算面积,发明了几何;为了量天测地,又发明了三角;为了计算天体运动,人类就发明了微积分。为了描述自然界的一些现象,人类又发明出了常微分方程和偏微分方程的强有力的工具……