七年级数学人教版的教案8篇

时间:2025-07-13 作者:tddiction

教案中嵌入的形成性评价,像GPS般实时调整教学行进方向,通过教案的反复实践,我们能够找到更优的教学方法,以下是网客范文小编精心为您推荐的七年级数学人教版的教案8篇,供大家参考。

七年级数学人教版的教案8篇

七年级数学人教版的教案篇1

知识目标

使学会解比例的方法,进一步理解和掌握比例的基本性质。

能力目标

联系的生活实际创设情境,体现解比例在生产生活中的广泛应用。

情感目标

利用所学知识解决生活中的问题,进一步培养综合运用知识的能力及情度、价值观的发展。

重点

使学会解比例的方法,进一步理解和掌握比例的基本性质。

难点

体现解比例在生产生活中的广泛应用。

教学过程

教学预设个性修改

目标导学,复习激趣,自主合作,汇报交流,变式训练

创境激疑一、旧知铺垫

1、什么叫做比例?

2、什么叫做比例的基本性质?怎样用比例的基本性质判断两个比能否组成比例?那么组成一个比例需要几项呢?

3、比例有几种表示形式?

合作探究二、探索新知

1、出示埃菲尔铁挂图

2、出示例题

(1)、读题。

(2)、从这道题里,你们获得了哪些信息?

(3)、在这信息里,关键理解哪里?(埃菲尔铁模型与埃菲尔铁塔的高度比是1:10)

(4)、这句话什么意思?(就是埃菲尔铁塔模型的高度:埃菲尔铁塔的高度=1:10)(板书)

(5)、还有一个条件是什么?(埃菲尔铁塔的高是320米)

(6)、我们把这个条件换到我们的这个关系中,就是(板书:埃菲尔铁塔的高度:320=1:10)

(7)、这道题怎么列比例式解答呢?请同学们想想,想出来的同学请举手。

(8)、根据学生的反馈板书:“解:设埃菲尔铁塔模型的高度设为x米”,把这个x代入这个数学模式中就组成了一个比例式(板书x:320=1:10)

(9)、这样在组成比例的四个项中,我们知道其中的几个项?还有几个项不知道?

(10)、不知道的这个项,我们来给它起个名字,好不好?叫做什么?(板书:未知项)

(11)、指着x:320=1:10,问:“这个未知项是多少呢?那怎么办?”谁上来做做? (指名板演)

(12)、为什么可以写成这样的等式呢?10x=320×1(根据比例的基本性质)

(13)、对了,把上面的比例式改写成下面这样一个等式,就是应用了比例的基本性质。应用比例的基本性质,把比例式改写成了一个等式,这个等式还是一个什么样的等式呀?(含有未知数的'等式)

(14)、这样含有未知数的等式,叫做方程。那么求出方程中的未知数就叫做什么?(解方程)那么在这个比例式中,我们知道了任意三项,要求出其中一项的过程又叫做什么?(解比例)出示比例的意义。

(15)、我们解出的答案对不对呢?怎么知道?可以怎样检验? (把结果代入题目中看看对应的比的比值是不是能成比例.)

(16)这道题还有其他的解法吗?(引导学生从比例的意义上来解。

2、教学例3

过渡:我们知道比例还有另一种表示形式,当是=这样形式的时候,又该怎么解呢?

(1)、出示例3,问:这题与刚刚那个比例有哪些不同?

(2)、解这种比例时,要注意些什么呢?(找出比例的外项、内项)

(3)、在这个比例里,哪些是外项?哪些是内项?

(4)、解答(提问:你们是怎么解答的?)、检验。

(5)、 =

拓展应用在一个比例中,两个外项的乘积正好互为倒数,已知一个内向是3,另一个内项是多少?

总结这节课主要学习了什么内容?

作业布置教材43页5题

板书设计解比例

例3、解比例=

解:2.4 =1.5×6

=( )×( )

( )

教学札记

七年级数学人教版的教案篇2

一、内容和内容解析

1、内容:同底数幂的乘法。

2、内容解析

同底数幂的乘法是幂的一种运算,在整式乘法中具有基础地位。在整式的乘法中,多项式的乘法要转化为单项式的乘法,单项式的乘法要转化为幂的运算,而幂的运算以同底数幂的乘法为基础.

同底数幂的乘法将同底数幂的乘法运算转化为指数的加法运算,其中底数a可以是具体的数、单项式、多项式、分式乃至任何代数式。同底数幂的乘法是类比数的乘方来学习的,首先在具体例子的基础上抽象出同底数幂的乘法的性质,进而通过推理加以推导,这一过程蕴含数式通性、从具体到抽象的思想方法。

基于以上分析,确定本节课的教学重点:同底数幂的乘法的运算性质。

二、目标和目标解析

1、目标

(1)理解同底数幂的乘法,会用这一性质进行同底数幂的乘法运算。

(2)体会数式通性和从具体到抽象的思想方法在研究数学问题中的作用。

2、目标解析

达成目标(1)的标志是:学生能根据乘方的意义推导出同底数幂乘法的性质,会用符号语言和文字语言表述这一性质,会用性质进行同

底数幂的乘法运算。

达成目标(2)的标志学生发现和推导同底数幂的乘法的运算性质,会用符号语言,文字语言表述这一性质,能认识到具体例子在发现结论的过程中所起的作用,能体会到数式通性在推到结论的过程中的重要作用.

三、教学问题诊断分析

在前面的学习中,学生已经学习了用字母表示数以及整式的加减运算,但是用字母表示幂以及幂的运算还是初次接触。幂的运算抽象程度较高,不易理解,特别对于am+n的指数的理解,因为它不仅抽象程度较高,而且运算结果反映在指数上,学生第一次接触,也很难理解.教学时,应引导学生回顾乘方的意义,从数式通性的角度理解字母表示的幂的意义,进而明确同底数幂乘法的运算性质.

本节课的教学难点是:同底数幂的运算性质的理解与推导.

四、教学过程设计

1、创设情境,提出问题

问题1: 一种电子计算机每秒可进行1014次运算,它工作103秒可进行多少次运算?

回顾与思考:什么叫乘方? an 表示的意义是什么?其中a、n、an分别叫什么?

师生活动:教师提出复习问题,学生主动思考并回答问题,并尝试用学过的知识解决问题.

设计意图:从实际问题导入,让学生动手试一试,主动探索,在自己

的实践中感受学习同底数幂的乘法的必要性,并通过有步骤、有依据的计算,为探索同底数幂的乘法的运算性质做好知识和方法的铺垫,同时因为关于底数、指数、幂等概念是在有理数的乘法中学习的,学生可能生疏或遗忘,在新课讲解之前利用这个实际问题进行复习。

2、探索新知

问题2根据乘方的意义填空:

25×22=( )×( )=_____________=2( ) a3×a2=( )×( )=______________=a( ) 5m×5n=( )×( )=______________=5()

(1) 探一探 观察几个式子左右两边底数、指数有什么变化?

(2) 说一说 根据上面式子的计算结果,你能发现有什么规律吗?小

组交流一下想法。

(3) 猜一猜 am×an=?(m、n是正整数)

师生活动:学生独立思考,然后小组交流思考结果.

设计意图:从引例到“推一推”、“说一说”、“猜一猜”是一个从特殊到一般,从具体到抽象,把幂的底数与指数分两步又有层次地进行概括抽象的过程。在这一过程中,要留给学生探索与交流的空间,让学生在自己的实践中获得运算法则。

问题3 你能将你的猜想推导出来吗?

am·an=(a·a·﹒﹒﹒·a) ·(a·a·﹒﹒﹒·a)——乘方的意义

= a·a·﹒﹒﹒·a —— 乘法结合律

=am+n ——乘方的意义

师生活动:教师提出问题,学生独立思考并写出推导过程,教师用多媒体展示推导过程。

设计意图:通过推导得出同底数幂的乘法的运算性质,让学生认识并体验数式通性,体会由具体到抽象的数学思想方法.

追问1: 通过上面的探索与推导,你能用文字语言概括同底数幂乘

法的运算性质吗?

师生活动:教师提出问题学生尝试用文字语言概括同底数幂乘法的运

算性质:同底数幂相乘,底数不变,指数相加。

3、课堂练习巩固同底数幂乘法的运算性质

练习1:计算题(结果写成幂的形式)

1)103×104 =

2)(-7)3·(-7)8 =

3)a·a3 =

4)(a-b)2·(a-b) =

5)a·a3·a5 =

师生活动:学生独立完成,小组合作交流答案。最后教师总结:在同底数幂的乘法运算中,底数可以是数、字母或式子。

设计意图:让学生通过练习,领会同底数幂乘法的运算性质。并体会底数的变化,可以是数、字母或式子。

问题4:a·a3·a5 =?同底数幂的乘法运算性质对于三个、四个······多个同底数幂相乘是否也适用呢?

师生活动:教师提出问题,学生思考回答问题,并将这一性质推广到多个同底数幂相乘的情况。

设计意图:通过利用文字语言概括性质以及对性质进行推广的过程,促进学生对公式结构特征的深层理解。

练习2判断题(若错误,请在题后写出正确答案)

1)a5 · a5= 2a5( )

2)b5 + b5 = b10( )

3)x5 ·x5 = x25( )

4)y5 · y5 = 2y10( )

5)m · m3 = m3( )

6)n + n3 = n4( )

师生活动:学生思考判断,领略“法官断案”的快乐。

设计意图:让学生熟练地运用同底数幂乘法的运算性质,领略同底数幂乘法的魅力。

4、课堂小结

教师与学生一起回顾本节课所讲内容以及注意事项

设计意图:

5、布置作业

必做:课本 p105页 第9题

选做:课本 p106页 第13题

七年级数学人教版的教案篇3

一、 教学目标

1、 在了解相反意义量的基础上,使学生了解正负数的概念和学习正负数的意义。

2、 使学生能正确判断一个数是正数还是负数,明确零既不是正数也不是负数。

3、 学会用正负数表示实际问题中具有相反意义的量。

二、 教学重点和难点

重点:正负数的概念

难点:负数的概念

三、 教具

投影片、实物投影仪

四、 教学内容

(一 )引入

师:我们知道,为了表示物体的个数和事物的顺序,产生了1,2,3,4……这些数,我们把它叫做什么数?

生:自然数

师:为了表示“没有”,又引入了一个什么数?

生:自然数0

师:当测量和计算的结果不是整数时,又引进了什么数?

生:分数(小数)

师:可见数的概念是随着生产和生活的需要而不断发展的。请同学们想一想,在现实生活中是否还存在着别类型的数呢?如吐鲁番盆地最低处低于海平面155米,世界最高峰珠穆朗玛高出海平面8848.13米,我市某天最高气温是零上8摄氏度。

请学生用数表示这些量,遭遇表示困难。

师:为了能表示这些量,我们需要引入一种新数这就是本节课所要学习的内容。[板书:1、1正数与负数]

(二)新课教学

1、 相反意义的量

师:在现实生活中,我们常常遇到一些具有相反意义的量,比如:(投影片显示)

(1) 汽车向东行驶2.5千米和向西行驶1.5千米;

(2) 气温从零上6摄氏度下降到零下6摄氏度;

(3) 风筝上升10米或下降5米。

引导学生明确具有相反意义的量的特征:(1)有两个量 (2)有相反的意义

请学生举出一些相反意义的量的实例。

教师归结:相反意义中的`一些常用词有:盈利与亏损,存入与支出,增加与减少,运进与运出,上升与下降等。

2、 正数与负数

师:用小学里学过的数能表示这些具有相反意义的量吗?如何来表示具有相反意义的量呢?

由师生讨论后得出:我们把一种意义的量规定为正的,用“+”(读作正)号来表示,同时把另一种与它相反意义的量规定为负的,用“-”(读作负)号来表示。

师:例如,如果零上6℃记作+6℃(读作正6摄氏度),那么零下6℃记作-6℃(读作负6摄氏度),请同学们用同样的方法表示(1)、(2)两题。

生:(1)如果向东行驶2.5千米记作+2.5千米(读作正2.5千米),那么向西行驶1.5千米记作-1.5千米(读作负1.5千米);(2)如果上升10米记作+10米(读作正10米),那么下降5米记作-5米(读作负5米)。

师:像+6,+10,+2.5等前面放有“+”号的数叫做正数,像-6,-5,-1.5等前面放有“-”号的数叫做负数。正号可以省略不写,如+5可以写成5,但负数的负号能省略不写吗?

生:(讨论后得出)不能。

师:(以温度计为例)温度计中的0不是表示没有温度,它通常表示水结成冰时的温度,是零上温度与零下温度的分界点,因此得出:零既不是正数也不是负数。

(三)、练习

1、 学生完成课本第4页练习1,2,3

2、 补充练习

(1)在-2,+2.5,0, ,-0.35,11中,正数是 ,负数是 ;

(2)如果向东为正,那么走-50米表示什么意思?如果向南为正,那么走-50米又表示什么意思?

(3)欧洲人以地面一层记为0,那么1楼、2楼、3楼……就表示为0,1,2……那么地下第二层表示为 。

(四)小结

1、 引入负数可以简明的表示相反意义的量,对于相反意义的量,如果其中一种量用正数表示,那么另一种量可以用负数表示。

2、 在表示具有相反意义的量时,把哪一种意义的量规定为正,可根据实际情况决定。

3、 要特别注意零既不是正数也不是负数,建立正负数概念后,当考虑一个数时,一定要考虑它的符号,这与小学里学过的数有很大的区别。

(五)作业

见作业1.1节作业。

七年级数学人教版的教案篇4

知识与技能:

1、了解一元一次不等式组的概念、

2、理解一元一次不等式组的解集,能求一元一次不等式组的解集、

3、会解一元一次不等式组、

过程与方法:

通过具体问题得到一元一次不等式组,从而了解一元一次不等式组的概念,解出每个不等式,利用数轴求出各不等式解集的公共部分,从而得到不等式组的解集,通过解几个有代表性的一元一次不等式组,总结出求不等式组解集的法则、

情感态度:

运用数轴确定不等式组的解集是行之有效的方法、这种“数形结合”的方法今后经常用到,锻炼同学们数形结合的能力,提高学习兴趣、

教学重点:

一元一次不等式组的解法、

教学难点:

确定一元一次不等式组的解集、

一、情境导入,初步认识

问题1:

现有两根木条a和b,a长10cm,b长3cm,如果要再找一根木条c,用这三根木条钉成一个三角形木框,那么木条c的长度有什么要求?

解:由于三角形中两边之____大于第三边,两边之____小于第三边,设c的长为xcm,则x

x>____,②

合起来,组成一个__________

由①解得_____________

由②解得_____________

在数轴上表示就是________________

容易看出:x的取值范围是____________________

这就是说,当木条c比____cm长并且比____cm短时,它能与木条a和b一起钉成三角形木框、

问题2:

由上面的解不等式组的过程用自己的语言归纳出一元一次不等式组的`解法

教学说明:全班同学可独立作业,也可分组自由讨论,10分钟后交流成果,逐步得出结论

二、思考探究,获取新知

思考什么叫一元一次不等式组,什么叫一元一次不等式组的解集,什么叫解不等式组?

归纳结论

1、定义:

(1)一元一次不等式组:几个含有相同未知数的一元一次不等式合起来组成一个一元一次不等式组、(2)一元一次不等式组的解集:几个不等式的解集的公共部分,叫做由它们所组成的不等式的解集、(3)解不等式组:求一元一次不等式组的解集的过程叫解一元一次不等式组、

2、一元一次不等式组的解法:

(1)求出每个一元一次不等式的解集、

(2)求出这些解集的公共部分,便得到一元一次不等式组的解集

七年级数学人教版的教案篇5

教学目标

①过实例体验整式加减的意义

②掌握整式的简单加减运算

③会运用整式的加减解决简单的实际问题

教学重点

本节的教学重点是整式的加减运算。

教学难点

例3的问题情境比较复杂,还涉及含有字母的代数式的大小比较,是本节教学的难点

教学方法

讲练法

教学用具

教学过程

集体备课稿个案补充

一、新课引入

甲、乙两个零件截面的面积哪一个比较大?大多少?把结果填在下面的横线上。

a1.5a

vb2b

b

甲乙

截面甲的面积是

截面乙的面积是

甲、乙的、两个截面面积的差是()—()=

本引例让学生思考后回答,教师引导,让学生知道:1、作差法是比较大小的一种很好的方法;2、在解决这个实际问题时,将问题转化成两个整式的差,从而得以解决;3、整式的加减可以归结为去括号和合并同类项。

二、讲授新课

例1求整式3x+4y与2x-2y-1的和

教师教会学生1、列式(注意整体性);2、去括号(特别是减法);3、有同类项就合并同类项(至少不能合并为止)。

变式练习:求3x+4y与2x-2y-1的差(学生做,两个学生板演)。

三、课堂练习(课本“做一做”)

1、填空:

(1)3x与-5y的和是,3x与-5y的差是;

(2)a-b,b-c,c-a三个多项式的和是。

2、先化简,再求值:3x^2-[x^2-2(3x-x^2)],其中x=-7。

四、典例分析

例2小红家的收入分农业收入和其他收入两部分,今年农业收入是其他收入的1.5倍。预计明年农业收入将减少20%,而其他收入将增加40%,那么预计小红家明年的全年总收入是增加,还是减少?

这个例题是本节课的难带内,教师可以设置下列问题:

1、分析题目的已知量与未知量,及相互间的关系;

2、选哪个未知量用字母来表示比较方?其他未知量怎么表示?

3、填空:设小红家今年其他收入为a元,则

(1)今年农业收入为元;

(2)预计明年农业收入为元;

(3)预计明年其他收入为元;

(4)今年全年总收入为元;

(5)预计明年全年总收入为元。

4、增加还是减少?怎么判断?

教师总结:在解决实际问题时,我们经常把其中的一个量或几个量先用字母表示,然后列出数式,这是运用数学解决实际问题的一个重要策略。

五、教学反馈(课本“课内练习”)

1、计算:

(1)3/2x^2-(2x^2)+(-2x^2);

(2)2(x-3x^2+1)-3(2x^2-x-2).

2、先化简,再求值:

(1)5x-[3x-x(2x-3)],其中x=1/2;

(2)5(3a^2b-ab^2)—(ab^2+3a^2b),其中a=1/2,b=-1。

3,如果某三角形第一条边长为(2a-b)cm,第二条边比第一条边长(a+b)cm,第三条边比第一条边的2倍少bcm,第三条边比第一条边的2倍少bcm,求这个三角形的周长。

六.探究活动

猜数游戏:游戏甲方把自己的出生年月份乘以2,加10,再把和乘5,再加上他家的人口数(小于10),将这样所得的结果告诉游戏乙方,乙方就能猜出甲方出生于何月,及他家有几口人。

本题有较大的难度,采取合作学习这种方式进行,启发学生利用本节中例2的解题策略及思想方法来分析这个题目。

教师可作以下工作:1、学生做甲方,教师做乙方猜测,让学生明白其中的奥秘(甲方告诉的结果的个位数字就是他家的人口数,结果减去人口数再减去50后除以10得到他的出生月份);2、组内积极展开游戏,并讨论这个游戏的原理是什么。(设甲方出生月份为x,家中人口数为y人,甲方告诉的结果是k(已知数),则结果k=5(2ax+10)+y=10x+50+y,所以结果k的个位数字是y,则(k-y-50)/10=x)。

七、小结、布置作业

七年级数学人教版的教案篇6

教学目标

?知识与能力目标】

1、巩固理解有理数的概念;

2、掌握数轴的意义及构成特点,明确其在实际中的应用;

3、会用数轴上的点表示有理数。

?过程与方法目标】

?情感态度价值观目标】

通过画数轴,给学生以图形美的,同时由于数形的结合,学生会得到和谐美的享受。

教学重难点

?教学重点】

数轴的意义及作用。

?教学难点】

数轴上的点与有理数的直观对应关系。

课前准备

?数学》人教版七年级上册,自制课件

教学过程

一、探索新知(投影展示)

问题在一条东西向的马路上,有一个汽车站,汽车站东3m和7、5m处分别有一棵柳树和一棵杨树,汽车站西3m和4、5m处分别有一棵槐树和一根电线杆,试画图表示这一情景。

学生结合上述问题分组讨论,明确以下问题:

1、怎样用数简明地表示这些树、电线杆与汽车站的相对位置关系(体现距离、方向)?

2、举例说明生活中类似的事例;

3、什么叫数轴?它有哪几个要素组成?

4、数轴的用处是什么?

5、你会画数轴吗并应用它吗?

“问题”解决:课件投影课本p8图1、2-1,同时说明其产生的过程及合理、简明的特点;

结论:正数、0和负数可以用一条直线上的点表示出来。

3、展示温度计图形,比较其与图1、2-1的共同点和不同点:

共同点:温度计也可以看作将正数、0和负数用一条直线上的.点表示出来的情形;

不同点:温度计是竖直的,方向感不直观。

4、描述数轴的意义(课本p9中间,由学生阅读,并尝试画一条数轴,强调)

(1)数轴的构成三要素:原点、方向、单位长度;

(2)数轴的用处是:把数用数轴上的点来表示,例(课本p9图1、2-3),说明有理数都可以用数轴上的点表示;

5、归纳

(1)一般地,设a是一个正数,则数轴上表示数a的点在原点的边,与原点的距离是个单位长度;表示数-a的点在原点的边,与原点的距离是个单位长度。

(2)数轴的出现将图形(直线上的点)和数紧密联系起来,使很多数学问题都可以借助图直观地表示,是“数形结合”的重要工具。

二、例题分析

例1.先画出数轴,然后在数轴上表示下列各数:

-1、5,0,-2,2,3

例2、数轴上与原点距离4个长度单位的点表示的数是。

三、巩固训练

课本p10练习

自我检测

(1)数轴的三要素是;

(2)数轴上表示-5的点在原点的侧,与原点的距离是个长度单位;

(3)数轴上表示5与-2的两点之间距离是单位长度,有个点;

(4)如图,a、b为有理数,则a0,b0,ab

课堂小结

(1)数轴概念:规定了原点、正方向、单位长度的直线叫做数轴。

(2)数轴的三要素:原点、正方向、单位长度。

(3)数学思想:数形结合的思想。

五、作业

1、课本14页习题1、2

2、完成“自我检测”

3、个性补充

⑴画一条数轴,并表示出如下各点:±0.5,±0.1,±0.75。

⑵画一条数轴,并表示出如下各点:1000,5000,-20xx。

⑶在数轴上标出到原点的距离小于3的整数。

⑷在数轴上标出-5和+5之间的所有整数。

七年级数学人教版的教案篇7

教学目标

1.经历观察、分析、操作、欣赏以及抽象,归纳等过程,经历探索图形平移性质的过程以及与他人合作交流的过程,进一步发展空间观念,增强审美意识。

2.通过实例认识平移,理解平移的含义,理解平移前后两个图形对应点连线平行且相等的性质.

重点、难点

重点:探索并理解平移的性质.

难点:对平移的认识和性质的探索.

教学过程

一、引入新课

1.教师打开幻灯机,投放课本图5.4-1的图案.

2.学生观察这些图案、思考并回答问题.

(1)它们有什么共同的特点?

(2)能否根据其中的一部分绘制出整个图案?

3.师生交流.

(1)这引进美丽的图案是由若干个相同的图案组合而成的,图5.4-1 上一排左边的图案(不考虑颜色)都有“基本图形”;中间一个正方形,上、下有正立与倒立的正三角形,如图(1);上排中间的图案(不考虑颜色)都有“基本图形”:正十二边形, 四周对称着4个等边三角形,如图(2);上排右边的图案(不考虑颜色)都有“基本图形”;正六边形,内接六角星,如图(3);下排的左图中的“基本图形”是鸽子与橄榄枝; 下排右图中的“基本图形”是上、下一对面朝右与面朝左的人头像组成的`图案.

《5.4平移》同步讲义练习和同步练习

1在△abc中,∠c=90°,ac=bc=5,现将△abc沿着cb的方向平移到△a′b′c′的位置,若平移的距离为2,则图中的阴影部分的面积为 .

2、把直角梯形abcd沿ad方向平移到梯形efgh,hg=24cm,wg=8cm,wc=6cm,求阴影部分的面积为 cm2.

3、绐正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针方向行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”.如:小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为l的顶点;然后从1→2为第二次“移位”.若小宇从编号为2的顶点开始,第20xx次“移位”后,则他所处顶点的编号是 .

《5.4平移》同步测试卷含答案

1. 将图形平移,下列结论错误的是( )

a.对应线段相等

b.对应角相等

c.对应点所连的线段互相平分

d.对应点所连的线段相等

解析: 根据平移的性质,将图形平移,对应线段相等、对应角相等、对应点所连的线段相等,而对应点所连的线段不一定互相平分,故选c.

12. 国旗上的四个小五角星,通过怎样的移动可以相互得到( )

a.轴对称 b.平移 c.旋转 d.平移和旋转

解析: 国旗上的四个小五角星通过平移和旋转可以相互得到.故选d.

七年级数学人教版的教案篇8

一、说教材分析

1.教材的地位和作用

二元一次方程组是初中数学的重点内容之一,是一元一次方程知识的延续和提高,又是学习其他数学知识的基础。本节课是在学生学习了一元一次方程的基础上,继续学习另一种方程及方程组,它是学生系统学习二元一次方程组知识的前提和基础。通过类比,让学生从中充分体会二元一次方程组,理解并掌握解二元一次方程组的基本概念,为以后函数等知识的学习打下基础。

2.教学目标

知识目标:通过实例了解二元一次方程和它的解,二元一次方程组和它的解。

能力目标:会判断一组未知数的值是否为二元一次方程及方程组的解。会在实际问题中列二元一次方程组。

情感目标:使学生通过交流、合作、讨论获取成功体验,激发学生学习知识的兴趣,增强学生的自信心。

3.重点、 难点

重点:二元一次方程和二元一次方程的解,二元一次方程组和二元一次方程组的解的概念。

难点:在实际生活中二元一次方程组的应用。

二、教法

现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生留出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的'自我建构。

另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好发激发学生的学习兴趣,增大教学容量,提高教学效率。

三、学法

“问题”是数学教学的心脏,活动是数学教学中的灵魂。所以我在学生思维最近发展区内设置并提出一系列问题,通过数学活动,引导学生:自主性学习,合作式学习,探究式学习等,激发学生的学习兴趣,提高学生的数学思维和参与度,力求学生在“双基”数学能力和理性精神方面得到一定发展。

四、教学过程

新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:

(1)复习旧知,温故知新

篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部10场比赛中得到16分,那么这个队胜负场数分别是多少?

设计意图:构建注意主张教学应从学生已有的知识体系出发,方程是本节课深入研究二元一次方程组的认知基础,这样设计有利于引导学生顺利地进入学习情境。

(2)创设情境,提出问题

这个问题中包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?

由问题知道,题中包含两个必须同时满足的条件:

胜的场数+负的场数=总场数,

胜场积分+负场积分=总积分。

这两个条件可以用方程

x+y=10

2x+y=16

表示:

上面两个方程中,每个方程都含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程.

把两个方程合在一起,写成

x+y=10

2x+y=16

像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组。

设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望,通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节。

(3)发现问题,探求新知

满足方程①,且符合问题的实际意义的x、y的值有哪些?把它们填入表中。

x xy

y

上表中哪对x、y的值还满足方程②。

一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。

二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

设计意图:现代数学教学论指出,数学知识的教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过学习用坐标表示平移观察分析、独立思考、小组交流等活动,引导学生归纳。

(4)分析思考,加深理解

通过前面的学习,学生已基本把握了本节所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第 五个环节。

(5)强化训练,巩固双基

课堂练习:

设计意图:几道练习题由浅入深、由易到难、各有侧重,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,升华知识。

练习2:已知下列三对数值:

哪一对是下列方程组的解?

(设计意图:数学教学论指出,数学知识要明确其内涵和外延(条件、结论、应用范围等),通过对二元一次方程组的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。

(6)小结归纳,拓展深化

我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体作用,从学习的指示、方法、体验是那个方面进行归纳,我设计了这个问题:

① 通过本节课的学习,你学会了哪些知识;

(7)布置作业,提高升华

教科书第89页1、第90页第1题。

以作业的巩固性和发展性为出发点,我设计了两个题,不仅是对本节课内容的一个反馈,也是对本节课知识的一个巩固。总的设计意图是反馈教学,巩固提高。

以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,使课堂效益达到状态。

五、评价与反思

本节课是在学生学习了一元一次方程基础上进行的,主要是引导学生运用类比思想,依次经过比较、归纳等活动,最终探索出二元一次方程组。下面是关于本节课的几点说明:

1、本节课对教材的内容进行了优化处理,为跳跃较大的知识点作充分的铺垫,密切联系新旧知识,让学生借助已有的知识和方法主动探索新知识,扩大知识结构,发展能力,完善人格,从而使课堂教学真正落实到学生的发展上,体现了以教师为主导、学生为主体,以思想为导向、知识为载体,以方法为中介、训练为主干,以培养学生的思维能力为中心、操作为动力的教学理念。

2、在课堂教学中为学生提供充分的探索空间,注重引导学生分工合作,独立思考,形成主见并进行交流,创设民主、宽松和谐的课堂气氛,让学生畅所欲言,同时进行实验操作,使课堂教学灵活直观,新鲜有趣,从而使课堂教学实现教学思想的先进性、教学目标的整体性、教学过程的有序性、教学方法的灵活性、教学手段的多样性、教学效果的可靠性。

3、注重量化评价与质怀评价相结合,充分利用课堂观察评价、问题讨论评价、学生自我评价等多元化评价,通过几组习题,将学生水平层次记录在案,为学生的学习评价提供充分的科学依据,从而综合检验学生对数学知识、技能的理解,以及学生在学习数学的过程在情感和态度的形成和发展。